Table of Contents

QT5104 Topics in Quantum Information Theory

A collection of notes manually scribed for AY2024/2025 Sem 2.

Stopped attending due to personal commitments and holidays :)


Week 7.1

BBM-92 QKD security proof

Quick description of protocol:

  1. State preparation (physics)
  2. Randomization
  3. Measurement (physics)
  4. Parameter estimation
  5. Error correction
  6. Privacy amplification (randomness extraction)

During state preparation, Alice and Bob initially shares (also with Eve) a state $$\rho_{A^mB^mE}$$, where $$m$$ is the number of qubits/rounds $$A^m = (A_1,A_2,A_3,\cdots{},A_m)$$. Without loss in generality, we assume the state to be prepared by Eve. The ideal state would be $$\rho_{A^mB^m} = |\Psi_0\rangle\langle\Psi_0|_{AB}^{\otimes{}m}$$. Other necessary parameters:

Randomization involves choosing random seeds (e.g. by Alice and shared with Bob (and Eve)):

During measurement, for each round $$i = \{1,\cdots{},m\}$$,

$$\Phi_i$$ Measure $$A_i,B_i$$ in Record $$A_i$$ outcome Record $$B_i$$ outcome
0 $$\{|0\rangle,|1\rangle\}$$ $$V_i$$ if $$i \in \Pi$$ else $$X_i$$ $$W_i$$ if $$i \in \Pi$$ else $$Y_i$$
1 $$\{|+\rangle,|-\rangle\}$$

Parameter estimation involves calculating the Hamming distance i.e. $$\sum_{i\in\Pi} \mathbf{1}\{v_i\neq{}w_i\} / k \le\delta$$ and abort if larger than $$\delta$$. More bookkeeping with an additional register that stores $$\phi$$ symbol if the test passes, or $$\perp$$ if test fails.

Error correction is mostly a classical information theory thing. In a basic description, Alice shares a error syndrome of size $$r$$ with Bob, whom then distills a approximate $$\hat{X}$$. It can be shown that $$r \approx nh(\delta)$$. The result of which is then mapped to $$T$$ and $$T'$$ respectively for Alice and Bob, using the hash function $$H_\text{ec}$$ which is used for checking the error correction was successful. More bookkeeping with flag register to verify $$T=T'$$.

Privacy amplification then finally uses $$H_\text{pa}$$ to extract keys $$K_a$$ and $$K_b$$.

Assumptions

Security and robustness

Goal is to have $$||\omega_{K_aK_bSCFE|F=(\phi,\phi)} - \chi_{K_AK_B}\otimes{} \omega{}_{SCFE|F=(\phi,\phi)}|| \le \epsilon $$.

Important, we can never ensure the trace distance is small, in the case where we condition on $$F=(\phi,\phi)$$ (since we have a chance that Eve chooses an eigenstate of one of the measurement basis, and Alice and Bob measures only in that basis), i.e. we cannot say that the key is secure conditioned on passing all the checks. So a more realistic goal is,

$$$$ Pr[F=(\phi,\phi)]\cdot{}||\omega_{K_aK_bSCFE|F=(\phi,\phi)} - \chi_{K_AK_B}\otimes{} \omega{}_{SCFE|F=(\phi,\phi)}|| \le \epsilon $$$$

and we need to choose $$l$$ such that,

\begin{align*} l &\approx H_\text{min}^\epsilon (X^n | SCFE) \\ &\ge{} H_\text{min}^\epsilon (X^n|E\Phi\Pi) - r - t - k \\ &\ge{} -H_\text{max}^\epsilon (\bar{X}^n | B^m \Phi\Pi) + n - r - t - k \\ &\ge{} -H_\text{max}^\epsilon (\bar{X}^n | \hat{\bar{X}}^n) + n - r - t - k \\ &\ge{} (1-h(\delta))n - r - t -k \end{align*}

i.e. the min-entropy is reduced using the side-information $$S,C$$, but we can bound this using Eve's knowledge of $$\Phi$$ and $$r$$ and $$t$$. Note that Eve can potentially design the state such that there are correlations between $$V$$ and $$X$$.


Week 6.2

This might be a recap: The goal now is to map from $$\rho_{XB}$$ to $$\rho_{ZB} \equiv \rho_{f(X)B}$$ where B is some independent subsystem, so as to extract randomness.

In order to make the process independent of $$\rho_{XB}$$, we use random functions. Given a seed $$S$$ with some pmf distribution $$p_S$$ (usually taken to be uniform), we apply the function $$f_S$$ to $$X$$,

A definition of two-universal family of functions, given as the small collision probability $$Pr_S[f_S(x) = f_S(x')] \le{} d_Z^{-1} \quad{}\forall{} x \ne x'$$, given a family of random functions $$f_S$$ and $$p_S$$ such that the function maps from X to Z.

Using the Holdr inequality, we have another inequality $$||ABC||_1 \le{} ||A||_4 ||B||_2 ||C||_4$$. This allows us to bound the trace distance:

\begin{align*} 2\Delta{}(\rho_{f_S(X)B}, \Pi_Z\otimes{} \rho_B) &= || (\rho_B^{1/4}\rho_B^{-1/4}) (\rho_{f_S(X)B} - \Pi_Z \otimes{} \rho_B) (\rho_B^{-1/4}\rho_B^{1/4})||_1 \\ &\le{} ||I_Z \otimes{} \rho_B^{1/4} ||_4 ||\rho_B^{-1/4} (\rho_{f_S(X)B} - \Pi_Z \otimes{} \rho_B) \rho_B^{-1/4} ||_2 \cdots{} \\ &= \sqrt{d_Z tr(\rho_B^{-1/2} (\rho_{f_S(X)B} - \Pi_Z \otimes{} \rho_B)^2 \rho_B^{-1/2} )} \\ &= \sqrt{d_Z tr(\rho_B^{-1/2} \rho_{f_S(X)B} \rho_B^{-1/2} \rho_{f_S(X)B} ) - 1} \end{align*}

Some notes:

\begin{align*} &E_S[tr(\rho_B^{-1/2} \rho_{f_S(X)B} \rho_B^{-1/2} \rho_{f_S(X)B} ) ] \\ &= E_S[\sum_z \sum_{x,x'} \rho_x\rho_{x'} \mathbf{1}\{ f_S(x) = z \}\mathbf{1}\{ f_S(x') = z \} tr(\rho_B^{-1/2}\rho_B^x \rho_B^{-1/2}\rho_B^{x'})] \\ &= E_S[\sum_{x,x'} \rho_x\rho_{x'} \mathbf{1}\{ f_S(x) = f_S(x') \}tr(\rho_B^{-1/2}\rho_B^x \rho_B^{-1/2}\rho_B^{x'})] \\ &= \sum_{x} p_x^2 tr(\rho_B^{-1/2}\rho_B^x \rho_B^{-1/2}\rho_B^{x'}) + \sum_{x\ne{}x'} p_x p_{x'} E_S[\mathbf{1}\{f_S(x) = f_S(x')\}] tr(\rho_B^{-1/2}\rho_B^x \rho_B^{-1/2}\rho_B^{x'}) \\ &\le{} \sum_{x} p_x^2 tr(\rho_B^{-1/2}\rho_B^x \rho_B^{-1/2}\rho_B^{x'}) + \frac{1}{d_Z} \sum_{x\ne{}x'} p_x p_{x'} tr(\rho_B^{-1/2}\rho_B^x \rho_B^{-1/2}\rho_B^{x'}) \\ &= tr(\rho_B^{-1/2}\rho_{XB}\rho_B^{-1/2}\rho_{XB}) + \frac{1}{d_Z} \\ &\le{} 2^{-H_\text{min}(XB)_\rho} + \frac{1}{d_Z} \end{align*}

\begin{align*} E_S[2\Delta{}(\rho_{f_S(X)B}, \Pi_Z\otimes{} \rho_B)] &\le{} \sqrt{d_Z tr(\rho_B^{-1/2} \rho_{f_S(X)B} \rho_B^{-1/2} \rho_{f_S(X)B} ) - 1} \\ \le{} \sqrt{d_Z 2^{-H_\text{min}(XB)_\rho}} \end{align*}

Interpretation: we want $$\frac{1}{2}\sqrt{d_Z 2^{-H_\text{min}(X|B)}} \le{} \epsilon{}$$.

We use the smooth-min entropy $$H_\text{min}^\epsilon{}(A|B)_\rho = \max_{\tilde{\rho} \approx{}_\epsilon{} \rho} H_\text{min} (A|B)_{\tilde{\rho}}$$

\begin{align*} E_S[2\Delta{}(\rho_{f_S(X)B}, \Pi_Z\otimes{} \rho_B)] &\le{} \sqrt{d_Z 2^{-H_\text{min}(X|B)_\rho}} \\ &= 2\epsilon{} + \sqrt{d_Z 2^{-H^\epsilon{}_\text{min}(X|B)_\rho}} \end{align*}

After the break, we shall learn how to bound the smooth-min entropy, introduce some QKD protocols, and also bound that. SO COOL.

Week 6.1

Missed!


Week 5.2

Missed!

Week 5.1

A nice reference: Watrous's.

Surprisal

We define surprisal $$s(p_x)$$ with the following desirable properties, given a random variable $$X \in \mathcal{X}$$ and pmf $$p_x = P_X(x)$$.

Entropy

The quantum entropy generalizes Shannon entropy for classical states, and should hold unitary invariance $$H(\rho) = H(U\rho{}U^\dagger{})$$.

There are von Neumann measurements, i.e. (Rank-1) projective measurements:

Interesting point: in classical systems, the entropy increases with the number of systems, e.g. $$H(XY) \ge{} H(X)$$, whereas in the case of purification, the larger system (of a singular pure state) has an entropy of 0, even though the smaller system can have non-zero entropy.

Given pure state $$|\rho\rangle{}_{AB}$$ with $$\rho_A,\rho_B$$ marginals, we have $$H(A) = H(B) \equiv H(\rho_B)$$ and $$H(AB) = 0$$.

Conditional entropy

We define the conditional entropy $$H(A|B) := H(AB) - H(B)$$,

The data-processing inequality (DPI) is the statement: $$H(A'|B')_{\epsilon\otimes{}\mathcal{F}(\rho)} \ge{} H(A|B)$$, for a unital quantum channel $$\epsilon_{A\rightarrow{}A'}$$ and quantum channel $$\mathcal{F}_{B\rightarrow{}B'}$$.

\begin{align*} H(A|BC) &\le{} H(A|B) \\ H(ABC) - H(BC) &\le{} H(AB) - H(B) \\ H(AC|B) &\le{} H(A|B) + H(C|B) \end{align*}

If $$\rho_{ABC}$$ is pure, we get the duality $$H(A|B) = -H(A|C)$$. The proof uses the idea that $$H(AB) = H(C)$$ since both parts complete the joint state: $$H(A|B) = H(AB) - H(B) = H(C) - H(AC) = -H(A|C)$$.

We also define mutual information $$I(A:B) = H(A) - H(A|B)$$, which is a measure of correlation (applies to both classical and quantum).

Relative entropy

For two states $$\rho$$ and $$\sigma$$, we define the relative entropy $$D(\rho||\sigma) = tr(\rho(\log \rho - \log \sigma))$$.

Thoughts


Week 4.2

CHSH game

CHSH quantum strategy: $$\rho_{A'B'} = |\Psi_0\rangle{}\langle{}\Psi_0|$$, $$M^0 = \{|0\rangle{}\langle{}0|, |1\rangle{}\langle{}1|\}, M^1 = \{|+\rangle{}\langle{}+|,|-\rangle{}\langle{}-|\}$$, $$N^0 = \{|\pi/8\rangle{}\langle{}\pi/8|, |5\pi/8\rangle{}\langle{}5\pi/8|\}, N^1 = \{|-\pi/8\rangle{}\langle{}-\pi/8|,|3\pi/8\rangle{}\langle{}3\pi/8|\}$$

We can quickly show this is the supremum using Naimark dilation: Given a POVM $$\{M_x\}_x$$ on A, there exists a projective POVM (PVM) $$\{P_x\}_x$$ and an isometry $$U:A\rightarrow{}AX$$ such that $$\langle{}M_x,A\rangle = \langle{}P_x,U\rho{}U^\dagger{}\rangle{}$$.

The upper bound can be derived and is given by Tsirelson's bound, using $$P(a,b|x,y) = \langle{}\phi|P_{A'}^x\otimes{}Q_{B'}^x|\phi\rangle{}$$:

The winning probability then becomes:

\begin{align*} p_\text{win}^q &= \frac{1}{2} + \frac{1}{8}\langle{}\psi|C^0\otimes{}D^0 + C^0\otimes{}D^1 + C^1 \otimes{}D^0 - C^1 \otimes{}D^1|\psi\rangle \\ &\equiv{} \frac{1}{2} + \frac{1}{8}\langle{}\psi|B|\psi\rangle \\ &\le{} \frac{1}{2} + \frac{1}{8}||B||_\infty{} \\ &= \frac{1}{2} + \frac{1}{8}\sqrt{||B||^2_\infty{}} \end{align*}

Mermin magic square game

The game follows $$X=Y=\{1,2,3\}, A=B = \{-1,1\}^{\otimes{}3}$$ and $$V(a,b,x,y) = \mathbf{1}\{a_1a_2a_3=1, b_1b_2b_3=-1, a_y = b_x\}$$. This is better visualized as a 3x3 square, where the Alice prepares a row and Bob prepares a column such that their intersection is the same.

The optimal classical strategy is to fill the square:

x \ y 1 2 3
1 1 1 1
2 -1 1 -1
3 1 -1 ?

where the last ? cannot be agreed on between Alice and Bob. This thus gives $$p_\text{win}^{\text{cl.}} = \frac{8}{9}$$.

For the quantum game, we rely on:

x \ y 1 2 3
1 $$I\otimes{}Z$$ $$Z\otimes{}I$$ $$Z\otimes{}Z$$
2 $$X\otimes{}I$$ $$I\otimes{}X$$ $$X\otimes{}X$$
3 $$-X\otimes{}Z$$ $$-Z\otimes{}X$$ $$Y\otimes{}Y$$

The joint eigenbasis gives the eigenvectors in the computational basis, i.e. $$|\theta_0\rangle{} = |00\rangle{}$$, etc. To win the game, Alice and Bob need to share two joint maximally-entangled states. Let $$O_{xy}$$ represent the observable in cell (x,y), and the state (on either Alice or Bob) be $$|\psi\rangle{} = |\Psi_0\rangle{}\otimes{}|\Psi_0\rangle{}$$, the winning probability is thus,

\begin{align*} p_\text{win}^q &= \frac{1}{2}(1 + \langle{}O_{xy}\otimes{}O_{xy},|\psi\rangle{}\langle{}\psi|\rangle{}) \\ &= \frac{1}{2}(1 + \langle{}O_{xy}O_{xy}^T\otimes{}I,|\psi\rangle{}\langle{}\psi|\rangle{}) \\ &= \frac{1}{2}(1 + \frac{1}{4}tr(O_{xy}O_{xy}^T)) \\ &= 1 \end{align*}

Experimental realization of this has not been performed.

Week 4.1

Quantum formalism recap

Quantum correlations and games

A two-party game $$G=(X,Y,A,B,P_{XY},V)$$, where $$X,Y,A,B$$ are discrete and finite alphabets (input/output), $$P_{XY}$$ is the pmf and $$V:A\times{}B\times{}X\times{}Y \rightarrow \{0,1\}$$.

A classical strategy $$S$$ for Alice and Bob is given by $$Q_{X'Y'}$$ and $$f_A:X\times{}X' \rightarrow A$$ and $$f_B:Y\times{}Y'\rightarrow{} B$$.

\begin{align*} P_{\text{win}}^{\text{cl.}}(G,S) &= Pr[V(f_A, f_B, X, Y) = 1] \\ &= \sum_{x,x',y,y'} P_{XY}(x,y)Q_{X'Y'}(x',y') \mathbf{1}\{V(\cdots{})=1\} \\ &= \sum_{x,y,a,b} P_{XY}(x,y)S(a,b|x,y) \mathbf{1}\{V(a,b,x,y)=1\} \end{align*}

A quantum strategy $$S_q$$ is given by a state $$\rho_{A',B'}$$ and a collection of POVMs $$\{M^x_a\}_a$$ on A' and $$\{N_b^y\}_b$$ on B' for all x,y.

We note that $$p_\text{win}^q(G) \ge{} p_\text{win}^{\text{cl.}}(G)$$.

Current thoughts


Week 3.1

Composite systems

A state $$\rho_{AB}$$ is separable if it can be written as $$\rho_{AB} = \sum_i p_i \rho_A^i \otimes{} \rho_B^i$$, otherwise we say $$\rho_{AB}$$ is entangled.

Channels

We look at isomorphism from $$L(V,W)$$ to $$V\otimes{}W$$, or in more explicit terms, $$L(L(V),L(W))$$ to $$L(V)\otimes{}L(W) \sim L(V\otimes{}W)$$. This is the Choi-Jamiotkowski isomorphism.

We can vectorize channels: $$\text{vec}(\epsilon_{V\rightarrow{}W}) = (\epsilon_{V\rightarrow{}W} \otimes{} \mathcal{I}) (|\Omega{}\rangle{}\langle{}\Omega{}|) = \sum_{i,j} \epsilon(|i\rangle{}\langle{}j|) \otimes{} |i\rangle{}\langle{}j|$$. This is called a Choi state.

Examples of other channels:

Norms and metrics on states

Canonical norm: $$||X|| = \sqrt{\langle{}X,X\rangle{}} = \sqrt{\sum_j \langle{}Xv_j,Xv_j\rangle{}} = \sqrt{\sum_j s_j^2} \equiv ||X||_2$$. This is called the 2-norm, or Frobenius norm, or Schatten-2 norm.

The p-norm has the same type of invariance properties and is defined $$||X||_p = (\sum_i s_i^p)^(1/p)$$.

Recall that a metric has the properties $$\Delta{}(\rho,\sigma) \ge{} 0$$ with equality iff $$\rho=\sigma$$, satisfies Cauchy-Schwarz inequality, and is symmetric. Some metrics that we can define:

Some relations:

\begin{align*} \max_u |\langle{}\rho|\sigma\rangle{}| &= \max_u |\langle{}\sqrt{\rho},\sqrt{\sigma}U^\dagger\rangle{}| \\ &= \max_u | tr\sqrt{\rho}\sqrt{\sigma} U^T |\\ &= \max_u |tr(|\sqrt{\rho}\sqrt{\sigma}| U^T V)| \\ &\ge{} tr|\sqrt{\rho}\sqrt{\sigma}| \\ &= \sqrt{F(\rho,\sigma)} \end{align*}


Week 2.2

Tensor spaces

Given V, W Hilbert spaces on F with inner products and ONBs, we can define a tensor space $$V\otimes{} W = \text{span}\{v_i\otimes{} w_j\}_{i,j}$$.

Composite systems

Notation:

Marginal state is given by $$\rho_A = \sum_i (I_A \otimes{} \langle{}i|_B) \rho_{AB} (I_A \otimes{} |i\rangle{}_B) \equiv{} (I_A\otimes{}\text{tr}_B)(\rho_AB) \equiv{} \text{tr}_B(\rho_AB)$$, given any ONB. $$\text{tr}_B$$ is called the partial trace, and can be written as $$tr_B(X) = \sum_i \langle{}i|X|i\rangle{}$$.

Given a state $$\rho_A = \sum_i \lambda{}_i |\psi_i\rangle{}\langle{}\psi_i| $$.

\begin{align*} tr_{A'} (\rho_{AA'}) &\equiv tr_{A'}(|\rho\rangle{}\langle{}\rho|_{AA'}) \\ &= tr_{A'} (\sum_{i,j} \sqrt{\lambda{}_i\lambda_j} |\psi_i\rangle{}\langle{}\psi_j| \otimes | i\rangle{}\langle{}i|) \\ &= \sum_{i,j} \sqrt{\lambda_i\lambda_j} \sum_k |\psi_i\rangle{}\langle{}\psi_j| \cdot{} \langle{}k|i\rangle{}\langle{}j|k\rangle{} \\ &= \sum_k \lambda_k |\psi_k\rangle{}\langle{}\psi_k| \\ &= \rho_A \end{align*}

Channels

Channels are linear maps that map between states: $$\epsilon_{A\rightarrow{}B} \in L(\text{Herm}(A),\text{Herm}(B))$$. Some properties we would like it to have:

Examples:

Channels have adjoints, e.g. the adjoint of trace is $$(tr_B)^\dagger{}: H_A \mapsto{} H_A\otimes{} I_B$$. This adjoint is actually pretty conceptually important.

Week 2.1

Every $$ X\in{} L(V,W)$$ can be written in the form $$ X\mapsto{} \sum_{i=0}^{r-1} s_i |w_i\rangle{}\langle{}v_i| $$, where $$ \{|v_i\rangle{}\}_i$$ is orthonormal in V. $$s_i>0$$ are called singular values.

For Hermitian operators, we have the spectral decomposition (eigenvalue decomposition), which boils down to the even more familiar $$H=\sum_i \lambda_i |v_i\rangle{}\langle{}v_i|$$ for $$H\in{} L(V)$$.

A Hermitian $$H\in{}L(V)$$ is positive semidefinite (psd) matrix if $$\langle{}v,Hv\rangle{}\ge{} 0 \forall{} v\in{}V$$.

For a function $$f:(0,\infty{}) \rightarrow{} R$$, we define $$f(H)$$ as $$\sum_{i=0,\lambda_i>0}^{r-1} f(\lambda-i)|v_i\rangle{}\langle{}v_i|$$ for any psd $$H$$.

We can define a partial order on Hermitian operators $$ A\ge{}B$$ iff $$A-B\ge{}0$$, e.g. $$1\ge{} M \ge{} 0$$ if eigenvalues of M are [0,1].

Quantum formalism

Quantum states (or density operators) are psd operators $$\rho,\sigma,\omega,\pi$$ with unit trace.

A positive operator-valued measure (POVM) is a set $$\{M_x\}_{x\in{}X}$$ such that $$M_x\ge{}0$$ and $$\sum_x M_x = \bf{1}$$.

Using the formalism (this involves multiple perspectives!),

\begin{align*} p_x &= \langle{} \Psi{}, M_x \rangle{} \\ &= \text{tr} (\Psi{}M_x) = \text{tr} (|\psi{}\rangle{}\langle{}\psi| M_x)\\ &= \langle{}\psi|M_x|\psi{}\rangle{} \\ &= \langle{} \psi{}, M_x\psi{} \rangle{} \end{align*}


Week 1.2 Linear algebra recap

Generally a recap of linear algebra basics.

Vector spaces

We denote a field $$F$$ (either the real field $$R$$ or complex field $$C$$). A vector space on F is a set V that is closed under addition $$V\times V \rightarrow V$$ and scalar multiplication $$F \times V \rightarrow V$$. This has the zero element 0.

A Hilbert space is a (finite dimensional) vector space with inner product $$\langle{}\cdot{},\cdot{}\rangle{}: V \times F \rightarrow F$$.

One example are pure states $$|\psi{}\rangle{} \in H$$, with the computational basis defined as $$\{|i\rangle{}\}_{i=0}^{d-1}$$. The inner product is defined $$\langle{}\theta{}|\phi{}\rangle{} \equiv{} \langle{}|\theta{}\rangle{},|\phi{}\rangle{}\rangle{} = \sum_i \overline{\theta}_i \cdot{} \phi_i $$. This is analogous to the matrix representation of dot product between column and row vectors.

Linear operators

Linear operators $$L(V,W)$$ contains all linear maps from V to W.

We can use the unitary to define further:

\begin{align*} \langle{}X,Y\rangle{} &= \sum_i \langle{}Xw_i,Yw_i\rangle{} \\ &= \sum_i \langle{}XUw_i,YUw_i\rangle{} \\ &= \langle{}XU,YU\rangle{} \\ &= \langle{}U^\dagger{}Y^\dagger{},U^\dagger{}X^\dagger{}\rangle{} \\ &= \langle{}Y^\dagger{},UU^\dagger{}X^\dagger{}\rangle{} \\ &= \langle{}Y^\dagger{},X^\dagger{}\rangle{} \end{align*}

A small note: vectors can be seen also as a map from the field to the vector space, e.g. $$ V\sim{} L(C,V)$$. We can generalize even further into channels, which map from some Hilbert space / set of linear operators to itself or another, e.g. $$ \langle{}\epsilon^\dagger{}(X),Y\rangle = \langle{} X,\epsilon{}(Y)\rangle{}$$ which can be seen as analogous to the Heisenberg vs Schrondinger picture.

Week 1.1 Administrative

A list of names of students in the class. Scribing for lecture notes and a final exam.

1)
a,c-id),(c+id,b